
446.639A Vector Space Optimization
Fall Semester 2012
Course Syllabus

Course Description

This course offers a unified treatment of optimization on finite-dimensional and infinite-dimensional
vector spaces. The first half of the course is devoted to finite-dimensional optimization, and covers
material that would be ordinarily treated in a “classical” optimization course: first- and second-
order optimality conditions for both unconstrained and constrained problems, iterative descent
algorithms for numerical optimization, and the special cases of linear and convex programming.
The second half is devoted to the calculus of variations and optimal control, and covers material
that would be ordinarily treated in a “classical” optimal control course: the Euler-Lagrange equa-
tions and the calculus of variations, the optimal control problem and the Maximum Principle, the
Hamilton-Jacobi-Bellman equation and dynamic programming, iterative numerical algorithms for
optimal control, and the special cases of the linear quadratic regulator and time-optimal control.
This course does not address, e.g., optimization problems of a combinatorial or discrete nature,
although the techniques developed in the course are in many cases relevant to these class of prob-
lems.

Given that entire courses are devoted to what we propose to cover in each half of the semester,
one can legitimately ask what is the motivation for undertaking such an ambitious (perhaps even
foolhardy) task, and what do we sacrifice in terms of depth by doubling the course’s scope.

Regarding the motivation behind the course, this course is targeted to students who can’t
afford to take a year’s worth of optimization courses, but need both a reliable intuition of the
theory and a working familiarity with practical algorithms. Much of what we do in engineering
involves optimization in some form, and it is important to develop a unified perspective on the
various types of optimization problems that one encounters. Students who plan to work in the
frontiers of optimal control and optimization obviously will need to augment their training with
more advanced courses, and may even be better served by taking specialized courses in, e.g., linear
programming, optimization theory, and optimal control theory rather than in this course.

As to what we sacrifice in depth, some technical aspects must necessarily be sacrificed, par-
ticularly with respect to mathematical proofs and convergence analysis. This may not be such a
bad thing, as I have tried to trim the details in a way that makes the contents more friendly and
accessible, and allows the reader to build a reasonably solid and rigorous intuition of the material
while avoiding the proverbial “getting bogged down in technicalities.” For example, proofs of global
convergence of descent methods, and the Maximum Principle of optimal control, require consider-
able effort, and to those more interested in the practical aspects of optimization the payoff may
not be worth the effort. At the same time, I believe a careful treatment of Lagrange multipliers
and the Karush-Kuhn-Tucker conditions, and the derivation of the Euler-Lagrange equations in a
more general setting, are important in developing a solid understanding of the material. In certain
introductory courses this material receives rather cavalier treatment, and in the long run this is not
helpful.

It is my hope that by the end of the course, the student, when faced with an optimization
problem (either finite or infinite-dimensional), will have developed the necessary mathematical and
physical intuition to determine if the problem is meaningful and solvable, and if so, to be able
to select an appropriate optimization algorithm, to make sense of the results, and if necessary to
customize the algorithm to exploit any special features of the problem. Analytic solutions are
always preferable—the student should first try to find analytic solutions when they exist, be able
to rigorously prove optimality, and also develop the ability to recognize any special features in the
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problem.

Instructor

The instructor for the course is (Frank) Chongwoo Park. His office is located in Building 301,
Room 1515, tel. 880-7133, email fcp@snu.ac.kr. There will be no designated office hours for the
course; rather, students are encouraged to contact the instructor at any time to discuss matters
related to the course.

Classroom and Time

The class will meet on Mondays and Wednesdays from 9:30AM to 11:45 AM, in Building 301,
Room 306.

Course Webpage

A course webpage will be maintained at the ETL site (exact address to be announced later).
Assignments, solutions, and course announcements will be posted on the course webpage.

Prerequisites

The prerequisites for the course are an understanding of linear algebra and differential equations at
an advanced undergraduate level, and proficiency in Matlab and a computer programming language,
preferably C or C++. For the second half of the course, which will focus on optimal control theory,
a previous introductory course in multivariable control or linear systems theory is helpful but not
required.

Term Project

A term project involving the implementation of a specific optimization algorithm will be required.
Term projects may be undertaken individually or in teams of up to two people. The educational
objective of the term project is to expose the student to the myriad practical issues underlying
optimization, which are best confronted by the actual implementation and testing of an algorithm
in a practical setting.

In most cases it will be convenient to use some generally available optimization software, and
the term project is designed to expose the student to the many choices available for an optimization
package or algorithm. Some problems, however, may not be solvable with existing solvers, e.g.,
convex problems that do not admit closed-form gradients and Hessians, singular optimal control
problems, etc. Also, some problems may require more specialized or modified algorithms to handle,
e.g., high-dimensional problems with sparsity or other type of special structure.

Around the tenth week of the course, students will be asked to submit term project proposals
that describe the application setting and the ensuing optimization problem, and the numerical
optimization algorithm to be used or developed. Precise guidelines for the term project proposal
and final report will be distributed later. The algorithms must be implemented in C, C++, or
Matlab.

Grading

Grading for the course will be based on a combination of problem sets (approximately 4-5 assign-
ments), two exams, and a term project. The approximate grading formula will be as follows:
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• Exam I (covering finite-dimensional optimization): 30%;

• Exam II (covering infinite-dimensional optimization): 30%;

• Term project and presentation: 30%;

• Homework and class participation: 10%.

Grading for the term projects will be done on an individual basis; for team projects the individual
contribution of each team member must be made explicit.

You are permitted, even encouraged, to work together with fellow students on problem sets.
However, the solutions must be written independently by each student. Since there is no TA for
the course, students will be assigned homework grading duties on a rotating basis, including the
preparation of solutions for distribution to the class.

Text

The primary text on finite-dimensional optimization will be Linear and Nonlinear Programming by
D.G. Luenberger and Y. Ye. We will not follow the sequence of topics as presented in the text, as I
believe it gives too much prominence to linear programming. We shall instead begin with the gen-
eral nonlinear optimization problem, and work our way back to linear programming; the detailed
sequence of topics is listed below. A helpful reference is Convex Optimization by S. Boyd and L.
Vandenweghe; free electronic drafts of the latter book should be available online at Steve Boyd’s
website (http://www.stanford.edu/ boyd/cvxbook). For infinite-dimensional optimization, our pri-
mary reference will be Optimal Control Theory by Donald Kirk. Some useful references include
Applied Optimal Control by A.E. Bryson and Y.C. Ho, Optimum Systems Control by A.P. Sage,
Optimization by Vector Space Methods by D.G. Luenberger, and an as yet unpublished set of lecture
notes by Daniel Liberzon.

Outline of Topics

We will attempt to closely adhere to the following chronological list of topics; omission or inclusion
of certain topics may be possible depending on time constraints and other external factors:

• Part I: Finite-dimensional optimization—examples and applications of finite-dimensional
optimization problems (Luenberger Ch. 1)

• Unconstrained problems: first- and second-order necessary and sufficient conditions for opti-
mality (Luenberger Ch. 7.1-7.3)

• Problems with equality constraints: Lagrange multipliers and first- and second-order opti-
mality conditions (Luenberger Ch. 11.1-11.5)

• Problems with inequality constraints: the Karush-Kuhn-Tucker optimality conditions (Luen-
berger Ch. 11.8)

• Convex optimization: convex sets and convex functions, properties of convex optimization
problems (Luenberger Ch. 7.4-7.5)

• Duality (Luenberger Ch. 14.1-14.2)

• Line search algorithms (Luenberger Ch. 8.1-8.5)
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• Descent methods for unconstrained problems: the steepest descent method and its conver-
gence properties (Luenberger Ch. 8.6-8.7)

• Newton’s method for unconstrained minimization (Luenberger Ch. 8.8)

• Quasi-Newton methods for unconstrained minimization: the DFP and BFGS algorithms (Lu-
enberger Ch. 10.1-10.4)

• Nonlinear constrained minimization: the gradient projection algorithm (Luenberger Ch. 12.4-
12.5)

• Nonlinear constrained minimization: penalty and barrier methods (Luenberger Ch. 13.1-13.4)

• Nonlinear constrained optimization: the sequential quadratic programming algorithm (SQP)
and its variants (Luenberger Ch. 15.1-15.5)

• Linear programming: basic results, the simplex method (Luenberger Ch. 2, 3.1-3.4, 4.1-4.2)

• Part II: Infinite-dimensional optimization—examples of infinite-dimensional optimiza-
tion problems (Kirk Ch. 1-2)

• Calculus of variations, Euler-Lagrange equations, second-order conditions (Kirk Ch. 4.1-4.3)

• Variational problems with integral and other constraints (Kirk Ch. 4.4-4.5)

• Optimal control: relation to the calculus of variations, first- and second-order necessary
conditions for optimality, conditions for fixed/free-final time, fixed/free final state problems.
(Kirk Ch. 5.1)

• The Maximum Principle, existence of optimal controls (Kirk Ch. 5.3)

• Time-optimal control: the double integrator problem (Kirk Ch. 5.4)

• Dynamic programming and the Hamilton-Jacobi-Bellman equation (Kirk Ch. 3)

• The linear quadratic regular (LQR) problem (Kirk Ch. 5.2, 3.12)

• Direct methods for numerical optimal control (Supplemental notes)

• Indirect methods for numerical optimal control (Supplemental notes)
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