Robotics@SNU

Research
- Design and Development of
   FLEA

- Omegabot: Inchworm inspired
   robot

- Large deformable morphing
   structure:Flytrap-inspired
   robot

- Wearable robotic hand
- Hands on surgical robot:
   Shared control system
- Situation Understanding for
   Smart Devices

- Wireless Camera Sensor
   Networks Technology

- Mobile Sensor Networks:
   Algorithms and Applications
- Whole-Body Control Framework
    for Humanoid Robot

- Walking Pattern Generation for
   Humanoid Robot

- Robot Hand Control
- Quadruped Robot Control with
   Whole-Body Control Framework

- Human Gait Analysis using
   3D Motion Capture
- Coordination of multiple robots
- Flocking and consensus
- Vision-based guidance and
   navigation

- Online collision avoidance for
   mobile robots

- Wireless sensor network
- Aerial Manipulation
- Haptics/VR
- Autonomous Mobility
- Telerobotics
- Mechanics/Control
- Industrial Control
- Mobile Manipulation
- Simultaneous Visual and
   Inertia Calibration

- Mechanics of Closed Chains
- Motion Optimization via
   Nonlinear Dimension
   Reduction

- Probabilistic Optimal Planning
   Algorithm for Minimum
   upstream Motions

- Automated Plug-In Recharging
   System for Hybrid Electric
   Vehicle
Coordination of multiple robots
Deployment of multiple robots can improve efficiency, performance, and survivability. We investigate the design and evaluation of the control architectures in order to deploy a team of multiple heterogeneous robots. This includes an overall hierarchy featuring flexible task assignments, and changes in goals, team composition, and communications. To achieve high levels of reliability despite uncertainty arising from environments and external disturbances, we are especially interested in taking into account the need to adaptively coordinate the tasks and replan paths.

For more information, visit the lab webpage.

jhp9395@robotics.snu.ac.kr, 02-880-7149